domingo, 26 de octubre de 2008

2.2 Estados y Transiciones de los Procesos

ESTADOS.
(Segun Andrew S. Tanenbaum, 2003) El principal trabajo del procesador es ejecutar las instrucciones de máquina que se encuentran en memoria principal. Estas instrucciones se encuentran en forma de programas. Para que un programa pueda ser ejecutado, el sistema operativo crea un nuevo proceso, y el procesador ejecuta una tras otra las instrucciones del mismo. En un entorno de multiprogramación, el procesador intercalará la ejecución de instrucciones de varios programas que se encuentran en memoria. El sistema operativo es el responsable de determinar las pautas de intercalado y asignación de recursos a cada proceso.

Existen varios modelos que representan los estados que puede tener un proceso; esto es el Modelo de dos estados y el Modelo de los cinco estados.

Modelo de 2 estados:
El modelo de estados más simple es el de dos estados. En este modelo, un proceso puede estar ejecutándose o no. Cuando se crea un nuevo proceso, se pone en estado de No ejecución. En algún momento el proceso que se está ejecutando pasará al estado No ejecución y otro proceso se elegirá de la lista de procesos listos para ejecutar para ponerlo en estado Ejecución. De esta explicación se desprende que es necesario que el sistema operativo pueda seguirle la pista a los procesos, conociendo su estado y el lugar que ocupa en memoria. Además los procesos que no se están ejecutando deben guardarse en algún tipo de cola mientras esperan su turno para ejecutar.



Modelo de Cinco estados:
El modelo anterior de 2 estados funcionaría bien con una cola FIFO y planificación por turno rotatorio para los procesos que no están en ejecución, si los procesos estuvieran siempre listos para ejecutar. En la realidad, los procesos utilizan datos para operar con ellos, y puede suceder que no se encuentren listos, o que se deba esperar algún suceso antes de continuar, como una operación de Entrada/Salida. Es por esto que se necesita un estado donde los procesos permanezcan esperando la realización de la operación de Entrada Salida por parte del Sistema Operativo hasta que puedan proseguir. Se divide entonces al estado No ejecución en dos estados: Listo y Espera. Se agregan además un estado Nuevo y otro Terminado.

Los cinco estados de este diagrama son los siguientes según Osëliyo:

*Ejecución: el proceso está actualmente en ejecución.
*Listo: el proceso está listo para ser ejecutado, sólo está esperando que el planificador de corto plazo así lo disponga.
*Espera: el proceso no puede ejecutar hasta que no se produzca cierto suceso, como la finalización de una operación de Entrada/Salida solicitada por una llamada al sistema operativo.
*Nuevo: El proceso recién fue creado y todavía no fue admitido por el sistema operativo. En general los procesos que se encuentran en este estado todavía no fueron cargados en la memoria principal.
*Terminado: El proceso fue expulsado del grupo de procesos ejecutables, ya sea porque terminó o por algún fallo, como un error de protección, aritmético, etc.

Los nuevos estados Nuevo y Terminado son útiles para la gestión de procesos. En este modelo los estados Espera y Listo tienen ambos colas de espera. Cuando un nuevo proceso es admitido por el sistema operativo, se sitúa en la cola de listos. A falta de un esquema de prioridades ésta puede ser una cola FIFO. Cuando se da un suceso se pasan a la cola de listos los procesos que esperaban por ese suceso.

Una de las razones para implementar el estado Espera era poder hacer que los procesos se puedan mantener esperando algún suceso, por ejemplo una Entrada/Salida. Sin embargo, al ser mucho más lentas estas operaciones, puede suceder que en nuestro modelo de cinco estados todos los procesos en memoria estén esperando en el estado Espera y que no haya más memoria disponible para nuevos procesos. Podría conseguirse más memoria, aunque es probable que esto sólo permita procesos más grandes y no necesariamente nuevos procesos. Además hay un costo asociado a la memoria y de cualquier forma es probable que se llegaría al mismo estado con el tiempo. Otra solución es el intercambio. El intercambio se lleva a cabo moviendo una parte de un proceso o un proceso completo desde la memoria principal al disco, quedando en el estado Suspendido. Después del intercambio, se puede aceptar un nuevo proceso o traer a memoria un proceso suspendido anteriormente. El problema que se presenta ahora es que puede ser que si se decide traer a memoria un proceso que está en el estado Suspendido, el mismo todavía se encuentre en espera. Sólo convendría traerlo cuando ya está listo para ejecutar, esto implica que ya aconteció el suceso que estaba esperando. Para tener esta diferenciación entre procesos suspendidos, ya sean listos como en espera, se utilizan cuatro estados: Listo, Espera, Espera y suspendido y Listo y suspendido.

TRANSICIONES
(Segun Andrew S. Tanenbaum, 2003)
*De ejecución á Bloqueado: al iniciar una operación de E/S, al realizar una operación WAIT sobre un semáforo a cero (en el tema de procesos concurrentes se estudiarán los semáforos).
*De ejecución á Listo: por ejemplo, en un sistema de tiempo compartido, cuando el proceso que ocupa la CPU lleva demasiado tiempo ejecutándose continuamente (agota su cuanto) el sistema operativo decide que otro proceso ocupe la CPU, pasando el proceso que ocupaba la CPU a estado listo.
*De Listo á en ejecución: cuando lo requiere el planificador de la CPU (veremos el planificador de la CPU en el tema de planificación de procesos).
*De Bloqueado á Listo: se dispone del recurso por el que se había bloqueado el proceso. Por ejemplo, termina la operación de E/S, o se produce una operación SIGNAL sobre el semáforo en que se bloqueó el proceso, no habiendo otros procesos bloqueados en el semáforo.

Obsérvese que de las cuatro transiciones de estado posibles, la única iniciada por el proceso de usuario es el bloqueo, las otras tres son iniciadas por entidades externas al proceso.


Interpretación de la figura: Como podemos observar en esta figura tenemos una serie de transiciones posibles entre estados de proceso, representados a partir mediante una gama de colores. Estos colores hay que interpretarlos de forma que, el color del borde de los estados representa a dichos estados, los colores dentro de los circulos nos dicen las posibles alternativas de acceso hacia otro estado, y los colores de las flechas nos representan hacia que estado nos dirigimos si seguimos la misma.

No hay comentarios: